Search results

Search for "molybdenum trioxide (MoO3)" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • mV·s−1. Keywords: 2-butanone; liquid-phase exfoliation; low-boiling point solvent; molybdenum trioxide (MoO3); supercapacitors; Introduction The advent of graphene has opened a new area of research in the field of two-dimensional materials [1]. The extraordinary properties of graphene have led
  • . Experimental Liquid-phase exfoliation of MoO3 Bulk molybdenum trioxide (MoO3) powder was purchased from Sigma-Aldrich (99% purity, 300 mesh) and 2-butanone was procured from Finar Limited (AR, 98% purity). All materials were used without further purification. Bulk MoO3 powder suspensions with different initial
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Improvement of the thermoelectric properties of a MoO3 monolayer through oxygen vacancies

  • Wenwen Zheng,
  • Wei Cao,
  • Ziyu Wang,
  • Huixiong Deng,
  • Jing Shi and
  • Rui Xiong

Beilstein J. Nanotechnol. 2019, 10, 2031–2038, doi:10.3762/bjnano.10.199

Graphical Abstract
  • and fuel cells [5]. Meanwhile, the thermoelectric application of TMO-based materials has been explored and their poor efficiency is still the major difficulty [6]. Among the TMOs, layered molybdenum trioxide (MoO3) has attracted attention as a potential electrode material in electrochemical products
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2019

Sensing behavior of flower-shaped MoS2 nanoflakes: case study with methanol and xylene

  • Maryam Barzegar,
  • Masoud Berahman and
  • Azam Iraji zad

Beilstein J. Nanotechnol. 2018, 9, 608–615, doi:10.3762/bjnano.9.57

Graphical Abstract
  • process is known as one of the scalable methods to synthesize MoS2 nanostructures. In this study, the gas sensing properties of flower-shaped MoS2 nanoflakes, which were prepared from molybdenum trioxide (MoO3) by a facile hydrothermal method, have been studied. Material characterization was performed
PDF
Album
Full Research Paper
Published 16 Feb 2018
Other Beilstein-Institut Open Science Activities